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ABSTRACT
Rational, autonomous agents must be able to revise their
commitments in the light of new opportunities. They must
decide when to default on commitments to the group in
order to commit to potentially more valuable outside of-
fers. The SPIRE experimental system allows the study
of intention reconciliation in team contexts. This paper
presents a new framework for SPIRE that allows for math-
ematical specification and provides a basis for the study of
learning. Analysis shows that a reactive policy can be ex-
pected to perform as well as more complex policies that look
ahead. We present an algorithm for learning when to default
on group commitments based solely on observed values of
group-related tasks and discuss the applicability of this al-
gorithm in settings where multiple agents may be learning.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence; I.2.6 [Artificial Intelligence]: Learning

General Terms
Design, Economics, Performance, Theory

Keywords
Evolution, adaptation and learning; group and organiza-
tional dynamics

1. INTRODUCTION
Sullivan et al. [12], citing Grosz and Kraus [6] and Brat-

man [2], note that rational agents cannot adopt conflicting
intentions. If an agent has adopted an intention to perform
some task that is part of a group activity, thereby com-
mitting to that task, it cannot also adopt an intention to
perform some other activity that conflicts with that task.
Because the agent cannot commit to both the group-related
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activity and the other activity, it must decide whether to
maintain its intention to perform the group-related task or
renege on its commitment to the group task and adopt an
intention to perform the other activity. It must reconcile
these intentions.

The SPIRE (SharedPlans Intention Reconciliation Exper-
iments) simulation system was designed to allow the study of
the effects of different environmental parameters and agent
decision-making procedures in a collaborative setting [12, 5,
13, 7]. The system enables investigation of the problem of
when it is appropriate for an agent to default on a com-
mitment to a group-related task in order to commit to a
potentially more valuable outside offer.

One key element of the SPIRE framework is a notion of
reputation for each agent. An agent’s reputation is hurt
whenever it defaults on a commitment to a group-related
task, but previous “bad behavior” is gradually forgiven over
time. The average utility of group-related tasks an agent
receives is a function of its reputation. In the model used
for this work (following Grosz et al. [7]), the values of tasks
each agent receives are also dependent on the reputation of
the group as a whole. Hence the behavior of each agent
affects not only the utility it can expect to receive in the
future from group-related activities, but also the utility each
and every member of the group can expect to receive in the
future from group-related activities.

Within this framework, simulations are performed in which
agents interact repeatedly with the environment by choos-
ing whether or not to default on commitments to group-
related tasks. The framework allows for the simulation of
heterogeneous communities of agents that have different de-
cision making procedures. Agent performance is typically
measured by average income (or reward) received over the
course of the simulation.

This paper presents a new model for the study of intention
reconciliation. The framework builds on the previous model
of agent-group interaction in the SPIRE system, but simpli-
fies the model considerably and provides a framework for the
study of learning. The number of parameters in the system
is significantly reduced, making the model more conducive
to analytical treatment while isolating the most important
aspects of agent-group interaction.

In this new model, the fully-informed decision-making
strategy used by Grosz et al. [7] reduces to a simple strat-
egy agents can use to decide whether or not to default on a
group commitment without using any information about the
state of the world. This strategy involves maintaining a cut-



off value and defaulting whenever the utility of the outside
offer exceeds the utility of the group-related task by more
than that value. We present empirical results for commu-
nities of homogeneous and heterogeneous agents using such
cutoff functions. The results for homogeneous communities
show that there is a cutoff that optimizes mean individual
utility received by agents and that this is a global maximum.

It is unrealistic for designers of real-world multi-agent sys-
tems to evaluate many different decision-making procedures
through extensive simulations to decide on the optimal pro-
cedure. Further, the composition of a group of agents or
the exact parameters and model of the environment may
be unknown at the time agents are designed. It is neces-
sary for agents to adapt successfully to different environ-
ments. We define the learning problem in the new frame-
work and present an algorithm that learns the cost of de-
faulting. We analyze the performance of this algorithm in
situations where single and multiple agents are learning.

2. RELATED WORK
Several recent approaches to modeling the intention rec-

onciliation problem use a market-oriented or contract-based
framework. Sandholm and Lesser [9] introduce the concept
of leveled commitment contracts in which agents pay the
rest of the group a predetermined penalty for defaulting on
a group-related task. Sen and Biswas [10] introduce a setup
in which there is no direct market-mediation, but instead
agents choose which others to work with based on previous
experiences. Teague and Sonenberg [14] investigate the ef-
fects of different ways of imposing penalties for defaulting
in the context of a target-capturing game.

The SPIRE project, to which the work presented in this
paper belongs, provides a general framework from which
to analyze and model the intention reconciliation problem.
SPIRE examines the interactions between an agent and the
entire group to which it belongs, rather than interactions
between individual agents. Also, SPIRE examines the be-
havior of agents that are committed to working in a particu-
lar group. They do not have the option of leaving the group
altogether. The best analogy for the SPIRE framework is
that of a company or firm that gets jobs from the market
and then contracts tasks required for the jobs to its agents.

Previous work using SPIRE considered three different ways
of imposing penalties for defaulting:

• A penalty for reneging on group-related activities that
represents the cost to the group, which is shared across
the entire group.

• The allocation of a percentage of all tasks such that
agents who default less get more valuable tasks.

• A measure of self-imposed reluctance to default1.

Our research also investigates learning in multi-agent set-
tings. In the single-agent setting, reinforcement learning
addresses the question of how an autonomous agent that
senses and acts in an environment can learn to choose ac-
tions that maximize its utility. The agent typically learns a
policy, a mapping from states to actions that specifies the
action the agent should take in any given state. Most work
in reinforcement learning uses the Markov Decision Process

1This “good-guy” effect, modeled using “brownie points” is
described in detail by Glass [4] and Glass and Grosz [5].

(MDP) framework. The Markov property states that the
probability of a transition from one state to another depends
solely on the current state and action, not on the history of
actions an agent has taken or states it has visited [8].

Stochastic games, also known as multi-agent MDPs, are
a natural extension of the MDP framework to multi-agent
domains. Stochastic games (SGs), first introduced by Shap-
ley [11], have been studied in the economics and game the-
ory communities. However, the initial work of Shapley, and
further work such as that of Vrieze [15], assumes that the
agent knows the transition and reward models, which is not
the case in the environments studied here. Recently, re-
inforcement learning techniques have also been applied to
SGs [3, 1]. Learning in multi-agent environments is diffi-
cult because of their potential non-stationarity. If an agent
is learning in an environment where its payoffs are affected
by other agents, the environmental parameters are signifi-
cantly affected by the behavior of the other agents. This
is not a problem when all the other agents are following
static or fixed policies. However, if the other agents are also
learning about the environment and modifying their strate-
gies over time, none of the standard reinforcement learning
algorithms are guaranteed to converge [1].

3. THE SPIRE MODEL

3.1 The Initial Model
In SPIRE, a group of agents works together on a set of

group tasks. An agent performs a group-related activity or
group-related task (sometimes referred to simply as tasks)
as part of a larger group task. Outside offers (referred to
as offers) are generated a fixed percentage of the time and
are offered to a random agent. When an agent receives an
offer for a time slot in which a task is already scheduled,
it must decide whether to renege on the group-related task
to accept the outside offer or not. Another agent may be
able to replace an agent that defaults on a commitment to a
group-related activity2. Each default incurs a baseline cost
that is shared across the whole group. In addition, a portion
of tasks are distributed to agents based on their ranking
by reputation, and thus agents with better reputations get
higher valued tasks.

Because of the many parameters and different effects in-
volved in the original SPIRE model, it is difficult to reason
about the causes of various effects. Further, recent work by
Teague and Sonenberg [14] suggests that different methods
of imposing penalties like the two mentioned above, as well
as the self-imposed reluctance of agents to default (as dis-
cussed in the “brownie point” model of Glass and Grosz [5])
lead to similar defaulting dynamics in the group.

3.2 A New Model for Reputation, Group-Related
Tasks and Outside Offers

3.2.1 The Market-Oriented Motivation
The framework we develop models a group (for example a

company or firm) which receives a certain number of tasks
to be performed at each time period from some outside con-
tracting agency. The group distributes these tasks among
its own workers, who cannot refuse a task assignment at the
time when tasks are assigned. However, the workers may

2For more details see Sullivan et al. [12] and Grosz et al. [7]



receive outside offers that they can then take. If an out-
side offer conflicts with a group-related task that the agent
is supposed to be performing, the agent may renege on the
group-related task.

The market will be unwilling to pay as much to a group
with a poor reputation as it would pay to a group with a
good reputation. A group can acquire a poor reputation
because many of its employees renege on their group com-
mitments on a regular basis, leading to tasks not being com-
pleted. In the same way, a group has the ability to improve
its reputation and get paid more for completing an equiva-
lent set of tasks. So a group has the ability to change the
amount of income it makes from the tasks it receives.

Suppose the group receives an income I from a particular
task performed by a member-agent. The group is unlikely
to give the agent the entire sum I. Instead it will give the
agent some proportion of I, keeping the rest for operational
expenses and overhead. The amount the group keeps is de-
termined by the individual reputation of the agent within
the group. The group will be willing to pay less to an indi-
vidual with a poor reputation because of the perceived risk.
The upper bound on what the agent can make from the task
is, of course, I. It is important to note that, in this frame-
work, the overhead the company keeps can be thought of as
a cost associated with agent defaults. It is not intended to
be a profit margin that the company management tries to
maximize.

3.2.2 Group-Related Tasks and Outside Offers
Group task values are drawn from a truncated normal

distribution, and reputation penalties are applied to all task
values. Initial values are drawn from a normal distribution
with a specified mean µ = M0 and standard deviation σ.
Whenever the value generated is below 0, the task value is
set to 0. A value drawn from this distribution represents
the average “market-value” of a task. Depending on the
reputation of the group, the group could be offered more or
less than this value to perform the task. Let group reputa-
tion be GR, and let α be a parameter associated with GR.
Then, for performing a task with average market value M ,
the group will get M + αGR. The value of performing this
task to an agent a is given by M +αGR+βIRa, where IRa

is a measure of the individual reputation of agent a and β
is an associated scaling parameter.

Outside offers are also drawn from a normal distribution.
The distribution of outside offer values are typically set to
have a lower mean and higher standard deviation than the
distribution of group task values. An outside offer is gener-
ated for each agent at each time slot.

Reputation changes are effectively instantaneous, since
new task and offer values for the next time slot take into
account the changed reputations. γ is defined as a param-
eter in the range [0, 1] that allows “forgetting” of previous
defaults, so that reputation can improve over time.

Group reputation GR is defined as a value in the range
[−0.5, 0.5]. The evolution of GR from one time period t to
the next, t + 1 is governed by the equation:

GR
t+1 = γGR

t + (1 − γ)(−0.5
num-defaults t

num-agents
)

where num-defaults t represents the number of defaults that
occurred in the entire group at time t. Thus, group repu-
tation will be stable at around 0 if approximately half the

members of the group default all the time, and will asymp-
totically approach 0.5 if none of the members ever default
and −0.5 if all the members always default. As a result, GR

is robust to many different environments in terms of outside
offer means and standard deviations.

The individual reputation of an agent a at time t, IRt
a

is defined in the range [−1, 0] so that it always serves as a
negative factor, and an agent cannot make more than its
group was given for a particular task. IR evolves as follows:

IR
t+1
a = γIR

t
a + (1 − γ)(−default(a, t))

where default(a, t) is an indicator function that is 1 if agent
a defaulted at time t and 0 otherwise. This function is again
symmetric and linear.

3.2.3 Changes from the Original System
Our new model differs significantly from the model pre-

sented by Grosz et al. [7] in several respects while preserving
the basic dynamics of agent-group interactions. The major
differences in the models include:

• Group task and outside offer values are drawn from
normal distributions truncated at 0, rather than from
uniform distributions.

• In the original SPIRE framework, outside offers were
only generated a percentage of the time as controlled
by an “outside offer percentage” parameter. A similar
effect is achieved in our model. Since it is never ad-
vantageous for an agent to default on a group-related
task unless the competing outside offer is more valu-
able, the agent will only consider some percentage of
the outside offers. For any choice of means and stan-
dard deviations for task values and offer values, a cer-
tain percentage of outside offers will be more valuable
than the group-related tasks.

• When only a small proportion of group-related tasks
are assigned based on reputation, observations of indi-
vidual utility received tend to be damped by the ran-
domly distributed tasks. To remove the damping ef-
fect, reputation penalties are applied to all tasks rather
than to a fixed proportion of tasks in the new model.

• The week-based framework in which there were 40 time
slots per week has been eliminated. Reputations now
change after every time period rather than at the end
of a “week” consisting of 40 time periods.

• The “task-density” parameter of the original frame-
work, which controlled the percentage of time slots in
which an agent would have a group-related task to
perform, is unnecessary in the new model. If the task-
value to an agent is 0, which corresponds to a situation
where the agent is not given a task, the agent is free
to take an outside offer without having its reputation
suffer. As a result the task-density parameter arises
naturally3.

3The manner in which the task-density parameter arises can
lead to situations in which a task with value to the group has
no value for a particular agent because of the βIRa factor.
In these cases, the group refuses to assign the task to the
agent due to the risk.



• The new model uses a linear reputation function. Non-
linear functions are useful in certain environments like
40 time-slot based weeks, because the change of repu-
tation does not occur till the end of the week, and an
agent has the opportunity to default multiple times
in one week. If the reputation function were linear,
an agent that defaulted once would almost always de-
fault all the time, leading to extreme behaviors in most
cases. In an immediate-update scenario, the forget-
ting factor is strong enough to allow different agents
to have IRs in different ranges without seeing extreme
behavior like always defaulting or never defaulting.

Our model is simpler and more streamlined than the orig-
inal SPIRE model, with only seven parameters: the means
and variances of the group task and outside offer values,
the scaling parameters α and β, and the forgiveness factor
γ. Despite the simplicity, our model captures key features of
the intention reconciliation problem, such as the effect of de-
faulting on both the individual and the group, and the need
to consider the long-term effects of a short-term decision to
default.

4. STATIC DECISION-MAKING POLICIES

4.1 Decision-Making Using One Step Looka-
head and Cutoff Functions

In previous work on SPIRE, Grosz et al. [7] use a decision-
making function that assumes full knowledge of both the
state (including the individual and group reputations) and
the equations which determine the state transitions (the
transition model). This section defines a similar decision-
making function DF that is essentially a direct translation
of the utility-based decision-making function used in previ-
ous work to the new model. This informed decision-making
function is provably equivalent to a decision-making func-
tion that does not need any information about the transi-
tion model or the state, but simply determines whether to
default or not based on whether the difference in the outside
offer value and the task value to the agent is greater than
a specified cutoff. This section presents empirical results
for homogeneous and heterogeneous communities of agents
using such “cutoff functions.”

4.1.1 The Decision Making Function DF(δ) and the
Cutoff Function CF(v)

The decision making function DF(δ) is based on one-step
lookahead. The parameter δ specifies the weight an agent
attaches to its estimate of future expected income. We stip-
ulate that agents are not aware of the finite horizon when
their interaction with the group will come to an end, because
finite horizons can lead to significant changes in default-
ing behavior, especially towards the end of a simulation [5].
Therefore, agents always make the assumption that their in-
teraction with the group will continue for an infinite number
of time-steps.

DF(δ) computes future expected income (FEI) in the
cases where an agent defaults and those in which it does not
default. FEI does not take into consideration future outside
offers, it only accounts for future group tasks. The expected
income for the next week is computed for the above two
cases. As discussed above, the agent knows the mean of the
distribution that initial task-values are drawn from and the

parameters α and β, along with IRt
a and GRt. This income

is then multiplied by a weighting factor based on δ. In the
infinite horizon case we consider, this weighting factor is the
sum of the infinite geometric progression δ, δ2, δ3, . . . , which
is δ

1−δ
. If the weighted difference between the estimated

FEI given the agent does not default and the weighted FEI
given that the agent does default is greater than the gain in
CI that can be obtained by defaulting, the agent does not
default, otherwise it does.

The cutoff function CF(v) is defined such that an agent
using CF(v) as its decision function chooses to default when-
ever the difference between the outside offer value and the
task value is greater than v.

4.1.2 The Function DF(δ) is Equivalent to a Cutoff
Function

Suppose the task value for time period t is T and the offer
value is O. M0 is the mean from which task values are drawn
before factoring in reputations, GRt is the group reputation
at time t, IRt

a is the individual reputation of agent a at time
t, δ is the parameter used by agents using DF to discount
future expected income, and γ is the “forgetting” parameter
in the evolution of IR and GR.

Define IRt+1
a (nodef ) to be the reputation of agent a if it

does not default at time t and IRt+1
a (def ) to be the repu-

tation if it does default at time t. Let FEI-NODEF be the
weighted expected future income as defined by the function
DF if the agent does not default at time t and let FEI-DEF
be the weighted expected future income as defined by DF
if the agent defaults at time t. Then:

FEI-NODEF =
δ

1 − δ
(M0 + βIR

t+1
a (nodef ) + αGR

t)

FEI-DEF =
δ

1 − δ
(M0 + βIR

t+1
a (def ) + αGR

t)

Therefore, the difference in FEI is given by

FEI-DIFF =
δ

1 − δ
(βIR

t+1
a (nodef ) − βIR

t+1
a (def ))

Now, IRt+1
a (nodef ) = γIRt

a and IRt+1
a (def ) = γIRt

a +
γ − 1. Therefore:

FEI-DIFF =
δβ

1 − δ
[(γIR

t
a − γIR

t
a) + (1 − γ)]

⇒ FEI-DIFF =
β(1 − γ)δ

1 − δ

Therefore, if O − T > β(1−γ)δ
1−δ

, the agent will choose to

default. The function DF(δ) is equivalent to the function

CF(β(1−γ)δ
1−δ

).
Note that the exact form of the result presented here does

not always hold, because if α and β are sufficiently high and
IRa and GR sufficiently low, the values of FEI-NODEF and
FEI-DEF may go below 0 in the above analysis, while the
agent will always assume that the minimum income it can
get from group-related tasks is 0, not negative. However,
this case does not arise for any of the parameter settings
discussed in this paper.

This result has multiple implications. First, an agent us-
ing the best simple cutoff rule will perform as well as any
agent that performs one step lookahead. Second, a cutoff
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Figure 1: Percentage of outside offers accepted by

agents, leading to defaults on group-related tasks,

as a function of cutoff value

agent does not need to know GR and IR, so a good policy
can be implemented even when GR and IR are not known.
Third, since the optimal cutoff does not depend on IR, a ra-
tional cutoff agent will use the same cutoff no matter what
its individual reputation. As a result, we avoid the problem
of dropouts, in which an agent’s reputation becomes so poor
that it considers itself unredeemable and always takes the
outside offer.

4.2 Experimental Methodology
The next two sections present experimental results. Ex-

periments reported in this section all use the same basic
parameters. Unless otherwise specified, α = 2; β = 0.5;
the mean of the distribution from which group-related task
values are drawn, M0 = 1; the standard deviation of this
distribution, σgt = 1; the mean of the distribution from
which offer values are drawn, µoo = 0; the standard de-
viation σoo = 3. The heavy weight α on GR replaces
to some extent the notion of group costs in the original
SPIRE model. Outside offers that are more valuable than
the group-related activity assigned to an agent at the same
time do not arise frequently, but they have the potential to
afford the agent considerable utility. Experiments were run
for 1000 time periods, and the first 100 time periods were
ignored in tabulating average incomes or rewards to allow
the group and individual reputations to stabilize. Because
of the static decision-making functions, allowing only 100
periods for this stabilization and gathering data from 1000
weeks leads to results that are the same as those obtained
by running for more time periods. Error bars represent 95%
confidence intervals.

4.3 Homogeneous Communities of Agents Us-
ing Cutoff Functions

These experiments investigate the behavior of communi-
ties of agents in which all the agents use the same value of v
for their cutoff function CF(v). Agents using a lower value
of v will be less “socially responsible” in the sense used by
Glass [4], that is, they will tend to default more on their
group commitments, because it requires a lower incentive
for them to be willing to renege on the group.

Figure 1 shows this effect clearly. The percentage of de-
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faults decreases as the cutoff value v increases, asymptoti-
cally approaching 0. Group task income is defined as the
income the group gets from performing group tasks only.
The value of group task income is closely related to the per-
centage of defaults, and one can see from Figure 2 that it
increases as the percentage of defaults decreases, asymptot-
ically reaching the theoretical optimum, which occurs when
none of the agents ever default on group commitments.

The most interesting result is shown in Figure 3, which
shows the mean individual income of group members as a
function of cutoff values. Individual income is defined as
the sum of the incomes an agent receives from group-related
tasks and outside offers (keeping in mind that the agent re-
ceives less income from completing a group task than the
group does). The optimal level of defaulting lies in between
never defaulting and always defaulting. This not only cor-
roborates the results of Grosz et al. [7] and Glass and Grosz
[5] that an intermediate level of “social consciousness” is
often optimal, it also shows that these results are robust
across different models of agent-group interaction, and that
they are a basic feature of domains like SPIRE in which
there are environmental incentives not to default. In the
agent-agent model of interaction of Teague and Sonenberg
[14], self-imposed reluctance to default (which is present in
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the brownie points model) leads to results similar to those
produced by the presence of environmental incentives not
to default. The results presented in this section extend this
finding to the SPIRE model of agent-group interaction.

4.4 Heterogeneous Communities of Agents Us-
ing Cutoff Functions

This section examines the behavior of agents in mixed
communities. For the sake of simplicity and establishing
some basic results, the experiments focus on the case where
a group consists of two types of agents, and the percent-
age of each type changes. We use representatives of “good”
agents, those who are socially responsible and do not default
much, and “bad” agents who default more frequently. For
the purposes of comparison, two cutoff values are used such
that homogeneous communities of agents using these two
cutoffs perform at about the same level in terms of mean
individual income. The two cutoff values are v = 1.0 (bad
agents) and v = 4.5 (good agents). A homogeneous com-
munity of agents using v = 4.5 performed somewhat better
than a homogeneous community of agents using v = 1.0.

One can see from Figure 4 that the bad agents outper-
formed the good agents for any particular percentage of good
agents. Therefore, it is individually optimal for any single
agent to default frequently in any particular mix of good
and bad agents. In fact, a single agent that always defaults
(i.e. uses a cutoff of 0) in a community with 39 good agents
performs even better than a single agent using a cutoff of 1
(having an MII of approximately 2.411 as opposed to 2.405
in simulations, although the difference is not statistically
significant). However, one can also see from Figure 4 that
the presence of a higher percentage of good agents leads to
a better outcome for every type of agent. Both good and
bad agents perform better when there are more good agents
present. If every single agent is bad and defaults a large
fraction of the time, this is globally sub-optimal. These re-
sults are an example of what is known as the “free-rider”
problem in game theory.

4.5 Discussion
The results presented here indicate that cutoff functions

represent a useful space of policies to study in the SPIRE

framework. The smooth curve seen in Figure 3 indicates
that there exists a cutoff that globally maximizes mean in-
dividual income in homogeneous agent communities. It is
also likely that there is a single best cutoff for an agent to
use in any given community. While this cutoff may not rep-
resent the best policy if a different model of the evolution of
reputations is used, the linearity of the reputation functions
ensures that the cost of defaulting to an agent is independent
of the value of the agent’s individual reputation. Therefore,
the decision of whether to default or not should be indepen-
dent of all aspects except the difference in outside-offer and
group-related task values.

Experiments such as the ones described here can be used
to implement policies to address intention reconciliation.
From Figure 3, we can surmise that the cost to the group of
defaulting is about 2. As policy-makers, we can institute a
“default fee” of 2 to be paid by an agent when it defaults,
and do away with individual reputation. The effect of this
policy should be to turn all agents into approximately CF(2)
agents. The advantages of this policy are that it achieves
high revenue, is stable, and avoids the free-rider problem.
The disadvantage, of course, is that it limits the ability of
creative agents to figure out better solutions, particularly if
the environment changes.

5. LEARNING IN THE SPIRE MODEL
The performance of an agent using a fixed policy is de-

pendent on two factors — the environment, represented by
parameters such as the weights of IR and GR, and the
agent community, represented by the size of the group and
the policies being used by other agents. Experiments show
that there is no single policy an agent can follow that op-
timizes its performance across a range of different commu-
nities and environments in the SPIRE model. Further, de-
signers of multi-agent systems in the real-world cannot run
simulations for all the different kinds of environments in
which their agents are expected to operate. It is necessary
for agents to adapt to their environments and communities
to optimize the utilities they receive. This section investi-
gates adaptive agents that learn policies based on the en-
vironments and agent communities they are part of. The
algorithm we present can be used successfully by a single
agent to learn near-optimal cutoffs when the other agents
are playing fixed strategies. It also scales reasonably well
to situations in which multiple agents are using the same
algorithm to learn how to behave.

5.1 Learning the Cost of Defaulting
Agents learn cutoffs by keeping running estimates of the

values that will be received in the future from defaulting
and not defaulting. To do this, an agent keeps track of its
behavior over the last n time steps. An agent maintains
estimates of edef and enodef , its expected total rewards in
the n time steps after defaulting and not defaulting, respec-
tively. At each time step, it looks at the action taken n steps
earlier, computes the reward earned over the last n steps,
and updates the relevant estimate. The estimate is updated
incrementally using some learning rate η.

The estimates are used for decision-making as follows: at
a given time step, an agent defaults if the difference between
the value of the outside offer (O) and the value the agent
receives from the group-related task (T ) is greater than the
agent’s estimate of the difference in utilities it will receive



over the next n steps if it defaults or if it does not default.
There is an exploration probability ε associated with each
decision. With probability 1−ε, if edef −enodef < O−T then
the agent will default, otherwise it will not default. With
probability ε the agent will take the contrary action, default-
ing if edef − enodef ≥ O − T and not defaulting otherwise.
For the experiments reported here, we use ε = 1

t0.3 where t

is the number of steps since the beginning4. ε decays over
time, which means that the policies agents use become less
exploratory, with agents choosing the action their estimates
suggest is optimal more as time goes on. This process is
especially important because the agents are learning their
estimates over n steps in the future, and if intermediate ac-
tions are not optimal the estimates are less accurate.

The selection of n, the number of steps that an agent
should look-ahead in the future and η, the learning rate to
use, raises some interesting issues. Theoretically, the cost
of defaulting at a given time step should extend indefinitely
into the future. Therefore, by restricting n to some finite
number, we introduce some bias into the estimate, which
will result in the estimate being lower than the true cost.
However, as we increase n, although the mean should be-
come closer to the true cost, the variance of the estimate
goes up, making the estimates rapidly less useful as we in-
crease n beyond a point. Using a smaller value of the learn-
ing rate η could reduce the variance of the estimates, but
that comes at the cost of slower learning, which is not de-
sirable, especially in real-world situations. After extensive
experimentation, we decided to use parameter settings of
n = 5 and η = 0.02 as default values in the experiments
presented here.

5.2 Single Agent Learning: Empirical Results
We performed experiments in which a single agent was

learning in a community of agents using fixed cutoff val-
ues. Three of these experiments were in communities of 10
agents, 9 of whom were using the same cutoff, and the other
three were with communities of two agents, one of whom
was learning while the other used a cutoff of 2. The results
are summarized in Table 1. The categories for best MII and
cutoff (used to achieve the best MII) are based on replicat-
ing the experiments with 10 or 2 agents but using one agent
with a different cutoff in the set {0, 1, 2, 3, 4} instead of the
learning agent. This method should give a good approxima-
tion to the best MII that can be achieved by a single agent
in the given community.

These results are representative of a series of such exper-
iments, in all of which the learning agent achieved perfor-
mance similar to the best performance achieved by a cutoff
agent using an integral cutoff. The changes in default per-
centage indicate that the agent is learning and adapting its
behavior to the community it finds itself in. For example,
when 10 agents are in the community and the other 9 are
using cutoffs of 0, it is advantageous to use a very low cutoff;
there is little to be gained from not defaulting very much,
because an individual’s effect on group reputation is small.
However, in a two agent community in which the other agent
is using a cutoff of 0, it may be better to have a slightly
higher cutoff, because an individual’s behavior can have a
greater impact on group reputation. Another interesting as-
pect of the results that also holds for the multi-agent learn-

4Initial experiments suggested this was an appropriate func-
tion to use.

ing experiments is that agent behavior is not significantly
affected by the choice of the initial estimate of the cost of
defaulting (for reasonable estimates). We used an initial
estimate of 0 for all experiments reported here.

5.3 Multi-Agent Learning
An algorithm that enables a single agent to learn near-

optimal behavior in communities of agents that use fixed
policies is important, but agent designers would also like
to enable the algorithm to be successful when other agents
could also be learning. It is important to design and evaluate
learning algorithms with this goal in mind. An important
component of the cutoff-learning algorithm we present in
this paper is the learning rate, η. If this learning rate is kept
constant, the algorithm should gradually forget past history,
giving more recent occurrences more weight in its estimate of
the cost of defaulting. On the other hand, if η decreases over
time, for example with a function like η = 1/t, then each
occurrence in the past will have equal weight at any time
step. The former method should be more suited to non-
stationary problems like the multi-agent learning problem.

To examine the effects of learning rates that stay constant
versus those that decrease over time, we ran experiments
in which all 10 agents used the same learning algorithm.
The results of these experiments were surprising. The per-
formance of communities of 10 agents that are all learning
was the same for both time-decreasing and constant learning
rates. In both cases the agents accrued a mean individual in-
come of 1.98±0.02 over the last 2000 time-periods of a 10000
time-period simulation, although the agents using a constant
learning rate defaulted significantly less (on approximately
87% as opposed to 98% of opportunities). While the differ-
ent default rates show that the agents are learning different
types of behavior, the performance of the agents using a
constant learning rate is surprisingly poor. This poor per-
formance can probably be attributed to the variance of agent
estimates of the cost of defaulting at any given time. Be-
cause there are 10 agents in the framework, the estimates
that each agent has at any given time will probably be dif-
ferent from the estimates of a number of other agents by
a fairly significant amount, and thus it is possible that the
agents do not converge to a more optimal default rate.

In support of this hypothesis, the results in communities
of just 2 learning agents (in which there will be less vari-
ance between agent estimates) are significantly better, with
agents achieving mean individual incomes of 2.14±0.02 and
defaulting on approximately 69% of opportunities.

We also experimented with scenarios in which 5 agents
took part in a 12000 time-period simulation, and each used
a fixed cutoff (of 2) for a certain number of time steps and
then started learning (the settings simulate environments in
which agents change their behavior over time, or agents are
replaced by different types). The results of this experiment
are reported in Table 2, where agent 1 learns from the be-
ginning, agent 2 uses the fixed cutoff for 2000 time periods
and then learns, agent 3 uses the fixed cutoff for 4000 time
periods and then learns, and so on. We used 12000 as the
number of time periods to give agent 5 some time to learn.
Agents used a fixed learning rate of 0.02.

Each income is reported to within a confidence interval
of ±0.03. The agents all behave similarly, defaulting on
between 77.3% and 79.1% of opportunities, in spite of the
fact that they started learning at different times. The fixed



Table 1: Single Agent Learning

# Agents Cutoff Best MII Best MII Cutoff %defs MII of Learner % defs of Learner
10 0 1.99 ± 0.02 0 100 1.97 ± 0.02 84.2
10 2 2.26 ± 0.02 1 65.3 2.25 ± 0.02 81.4
10 3 2.34 ± 0.02 0 100 2.34 ± 0.02 83.9
2 0 2.06 ± 0.02 1 66.9 2.05 ± 0.02 71.1
2 2 2.22 ± 0.02 1 66.4 2.21 ± 0.02 69.0
2 3 2.26 ± 0.02 1 66.8 2.25 ± 0.02 66.9

Table 2: MIIs for Stepped Learning

Ag 1 Ag 2 Ag 3 Ag 4 Ag 5
2.05 2.08 2.06 2.08 2.06

learning rate allows them to forget the past and adjust to the
present state of the environment, which is crucial for learn-
ing in nonstationary environments. Agents using a time-
decreasing learning rate default more in similar experiments,
because it is advantageous for a learning agent to default
more earlier in time, when other agents using a higher cut-
off can be exploited.

6. CONCLUSIONS AND FUTURE WORK
This paper makes four main contributions:

• a new, simpler framework for studying intention rec-
onciliation that allows for mathematical specification
and provides a basis for the study of learning;

• an analysis showing that a simple “reactive” cutoff pol-
icy can be expected to perform as well as more complex
policies that look ahead;

• an empirical investigation showing that an interme-
diate level of “social consciousness” leads to optimal
results and demonstrating the free-rider problem;

• an algorithm for learning the optimal cutoff value based
solely on observed task values.

There are a number of ways in which to extend the study
in this paper. The overall framework and the evolution of
reputations is designed to be robust over a wide range of
environmental settings, but further empirical investigation
would be useful.

One way to extend our model is to allow replacements,
where an idle agent can substitute for an agent that defaults
on a group task. Another is to allow agents to enter and
leave the group over time. It would be interesting to see
whether or not these modifications significantly change the
findings presented here.

The most significant bottleneck is the difficulty of multi-
agent learning. Progress is being made in that area, with
the most promising approach being to learn mixed strate-
gies [1]. From a strategic point of view, it is unlikely that
mixed strategies would be required in our domain. From a
learning perspective, however, mixed strategies may be more
robust to changes in the environment. Our model provides
an interesting testbed for new techniques in this area.
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